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Abstract
The domain structure of a scalar field or a vector potential and a solenoidal field
on a plane is shown to have a symmetry of the Kleinian group. This allows us to
build a classification of domain structures for superconductors and magnetics
by means of the Kleinian groups and explain their main properties. A number
of examples of the domain branching on a plane boundary of superconductors
and magnetics are described. Generalizations of the theory allow us to take in
account the more general types of field, the symmetry of the crystal lattice, the
three-dimensionality of space and more general functionals of the free energy.

PACS numbers: 0220, 7420

Introduction

Physical fields in solids are known to form different domain structures. We show in this
paper that similar to the description of the crystal symmetry by space groups the symmetry of
domain structures is described by the Kleinian groups. This allows us to build a classification
of domain structures for superconductors and magnetics and explain their main properties.

In this paper we study mainly the domain branching phenomenon, i.e. the hierarchical,
self-similar and fractal splitting up of a domain of the field on a boundary of a solid. The
domain branching in superconductors was first studied by Landau [11, 12]. A consideration
of the domain branching in magnetics was started by Landau and Lifshitz [10], Lifshitz [13]
and especially by Privorotsky [14, 15].

The aim of this paper is to describe the domain branching phenomenon by a language of
symmetry groups and complex analysis.

The main idea is as follows. As is well known, any analytical function is a mathematical
image of the plane scalar field or the complex potential of a potential and solenoidal vector field
on a plane. We know also that the only possible conformal transformations of the complete
complex plane into itself are the linear-fractional transformations which form the Möbius
group. Therefore any symmetry of the field on a plane is described by a discontinuous subgroup
or, which is the same thing, by a Kleinian subgroup of the Möbius group M2, and the domains
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of the field must correspond to fundamental domains of this subgroup. We apply this idea to
discussion of the domain branching in superconductors and magnetics.

The organization of the paper is the following. In the first section we build a theory of
domain structures in superconductors and on a simple example study the domain branching
on a plane boundary of superconductors. In the second section we consider domain structures
in magnetics in the simplest situation. The domain branching in magnetics is shown to lead
to a natural width of the domain boundary and in such a way to determine the limitations for
the usage of magnetic domains for storage and reproducing of information. Then we present
the general formulation of our approach to the domain branching phenomenon and consider
different generalizations of the theory with the aim of taking into account the more general
types of field, the symmetry of the crystal lattice, the three-dimensionality of space and more
general functionals of the free energy.

1. Scalar order parameter. Domains in superconductors

Let us consider a plane superconductor and let us describe its points by real coordinates x, y or
complex numbers z = x + ıy where ı is the imaginary unit. The superconductor is well known
to be characterized by a complex function (the London order parameter) �(x, y) = �(z),
which has the following physical meaning: |�(z)| is the spectral gap for the one-electron
excitations in the superconductor and grad arg�(z) is the current.

The order parameter is an extremal of the Ginzburg–Landau functional of non-equilibrium
free energy

F =
∫

{|grad�|2 + P4(|�|)} dx dy P4(|�|) = (a/2)|�|2 + (b/4)|�|4 (1.1)

and therefore satisfies the equation

�� = a� + |�|2�. (1.2)

If we can neglect the polynomial of fourth order P4(|�|), which is valid near the
phase transition temperature, then the Ginzburg–Landau functional transforms to the Dirichlet
functional

D =
∫

|grad�|2 dx dy (1.3)

and hence the order parameter appears to be a solution of the Laplace equation

�� = 4
∂2�

∂z∂z
= 0. (1.4)

A general solution of the Laplace equation is a sum of analytical and anti-analytical
functions. Furthermore, we shall study a particular solution which is an analytical function,
�(z).

Let us recall that the Laplace equation is invariant with respect to conformal
transformations ζ = f (z), f ′(z) �= 0:

∂2�

∂z∂z
= |f ′(z)|2 ∂2�

∂ζ∂ζ
= 0 ζ = f (z). (1.5)

Let us recall also that the only possible conformal transformations of the extended complex
plane C = CP into itself are the linear-fractional transformations

ζ = γ z = az + b

cz + d
ad − bc = 1 (a, b, c, d ∈ C) (1.6)
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which form the Möbius group M2. Taking into account a natural isomorphism

M2
∼= SL(2,C)/{±12} (1.7)

where 12 is the 2 × 2 unit matrix, we shall write the elements γ of the Möbius group in the
form

γ =
[
a b

c d

]
. (1.8)

Thus it follows from the consideration presented above that the domain structures of
the superconductor correspond to discontinuous subgroups or, which is the same thing, to
the Kleinian subgroups of the Möbius group M2, and the domains of the superconductor
correspond appropriately to fundamental domains of these subgroups.

The simplest example of the Kleinian groups is principal congruence subgroups of the
level N

�(N) = {γ ∈ M2|γ ≡ 12 mod (N)} (1.9)

where N is a positive integer.
The order parameter in a superconductor is scalar. This means that in a superconductor

with a domain structure the order parameter �(z) must be the automorphic function of the
Kleinian group � characterizing the symmetry of the appropriate domain structure. In other
words the order parameter �(z) must satisfy the functional equation

�(γ z) = �(z) z ∈ C γ ∈ �.

If we take into account a boundary of the superconductor then the elements of the Kleinian
group must leave this boundary invariant. We recall in this connection that if the Kleinian
group � leaves invariant some circle (or line) we call it the Fuchsian group. Therefore the
Kleinian group describing the domain structure of a bounded superconductor must be the
Fuchsian group.

Example. The domain structure in a superconductor, described by the principal
congruence subgroup Γ(2). We consider a superconductor in the upper half plane and
designate points of the upper half plane C

+ by τ = η + ıζ .

The order parameter µ(τ) of the superconductor will be the automorphic function of the
principal congruence subgroup of the level 2 �(2).

The generators of this subgroup are elements

γ1 : γ1τ = τ − 2 γ2 : γ2τ = τ

−2τ + 1
.

Every element of �(2) is a product of a finite number of powers of generators γ1, γ2:

γ = γ
m1
1 γ

n1
2 . . . γ

mk

1 γ
nk

2 .

We can define the fundamental domain F(2) of the subgroup �(2) in the following way:

F(2) = {τ |Im τ > 0,−1 � Re τ < 1, |τ − 1/2| > 1/2, |τ + 1/2| � 1/2}. (1.10)

Using the Eisenstein series it is easy to show that the subgroup �(2) has the following
automorphic function:

µ(τ) = 1 − λ(τ) = e1(τ ) − e2(τ )

e1(τ ) − e3(τ )
= ℘(τ, ıπ) − ℘(τ, ıπτ)

℘ (τ, ıπ) − ℘(τ, ıπ(1 + τ))

= θ4
3 (0|τ) − θ4

2 (0|τ)
θ4

3 (0|τ) = 1 − 16

(∑∞
m=0 q

(m+1/2)2

1 + 2
∑∞

m=1 q
m2

)4

= 1 − 16q
∞∏

m=1

(
1 − q2m

1 + q2m−1

)8

q = eıπτ |q| < 1. (1.11)
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Here we use standard notations of a theory of elliptic modular functions. For example,

℘(τ, x) = 1

x2
+

′∑
m,n

[
1

(x − m − nτ)2
− 1

(m + nτ)2

]

is the Weierstrass function.
Let us enumerate the main properties of the function µ(τ):

(1) The function µ(τ) is analytical in the upper half plane and does not have there the values
0, 1,∞. On the real line µ(∞) = 1, µ(±1) = ∞, µ(0) = 0 and the 0 is of the first order.

(2) µ(τ) is an automorphic function of the principal congruence subgroup of the level 2

�(2) = {γ ∈ M2|γ ≡ 12 mod (2)}. (1.12)

This means that

µ(γ τ) = µ(τ) γ ∈ �(2).

Every simple automorphic function of the subgroup �(2) is a rational function of µ(τ).
(3) The function µ(τ) maps the fundamental domain F(2) on a complex plane with a cut

from zero to infinity in such a way that the right-hand part of F(2) goes to the upper half
plane of µ. The function µ(τ) accepts every value in the fundamental domain F(2) of
the principal congruence subgroup �(2) once and only once. µ(−τ) = µ(τ); i.e., the
function µ(τ) is symmetric with respect to the imaginary axis. The function µ(τ) has real
values on the imaginary axis and on the boundary of the fundamental domain F(2).
The fundamental domain F(2) of the principal congruence subgroup �(2) consists of six
fundamental domains F(1) of �(1). Under the action of the modular group �(1) the
function µ(τ) is transformed to

µ(τ) 1 − µ(τ)
1

µ(τ)

1

1 − µ(τ)

µ(τ)

1 − µ(τ)

1 − µ(τ)

µ(τ)
.

These six transformations form the group of anharmonic quotients.
(4) The function inverse to the function µ(τ) has the form

τ(µ) = i
2F1(1/2, 1/2; 1;µ)

2F1(1/2, 1/2; 1; 1 − µ)
(1.13)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.

Thus in this example we have a superconductor in the upper half plane with the order
parameter having the value unity at infinity and a dense set of values zero and infinity at
a real line. Of course we should not take into account seriously the infinite values of the
order parameter since at appropriate points we cannot neglect in the free energy functional
of the superconductor (1.1) the polynomial of the fourth order. The zero values of the order
parameter are centres of magnetic vortices which are perpendicular to the plane. Hence we
have the superconductor bounded with a dense set of magnetic vortices, which create currents,
preventing the penetration of magnetic field inside the superconductor. The real line is a natural
boundary of existence for the analytical function µ(τ). This is obvious since the real line is the
boundary of the superconductor itself and therefore the order parameter of the superconductor
may exist only inside the superconductor.

As a domain in the superconductor we can choose the fundamental domain F(2). The
images of this domain, γF(2), γ ∈ �(2), are diminishing with increasing order of the mapping
and thus describe the domain branching at the boundary of the superconductor.

Above we have studied the domain branching of the scalar order parameter at the boundary
of a half-plane. Of course we can carry over these results to a disc (by a linear-fractional map),
a stripe (by a trigonometric function), a rectangle (by an elliptic function map) etc.
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Figure 1. The upper half complex plane with the fundamental domain of the principal congruence
subgroup �(2) and the lines |µ| = const of the automorphic function µ(z) defined by the
formula (1.11).

Figure 2. Experimental data for the magnetic field penetration into a superconductor of the second
type (Nb–Ta alloy) presented in the book [16].

In figure 1 in the upper half plane we can see the fundamental domain of the superconductor
with its images and the lines |µ| = const calculated by means of the expression (1.13). We
can consider the line |µ| = ε, where ε is a given positive number, as a boundary between
the regions of the superconducting and normal states. Thus we see that the magnetic field
penetrates into the superconductor in the form of ‘fingers’.

This theoretical result is illustrated by figure 2, borrowed from the book [16],
which represents results of experimental studies of the magnetic field penetration into a
superconductor of the second type (Nb–Ta alloy). We can see a lot of ‘fingers’ of different
size. The last property is a direct consequence of the conformal invariance of our model when
a length unit is arbitrary.

Above we have studied the domain structure described by the symmetry group �(2). It
is possible to show that the modular group �(1) and the appropriate modular function J (τ)

describe the situation when the magnetic field has already penetrated into the superconductor
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and centres of magnetic vortices form an ordered structure inside the superconductor. We think
that on changing the external magnetic field the superconducting order parameter will change
its symmetry and will go over from one structure to another by means of a sequence of phase
transitions of second order.

The results presented above are valid for any plane scalar field and in such a way are
related to the so-called Laplace fractals and the problems of growth.

2. Vector order parameter. Domains in magnetics

As an example of a vector field on a plane let us consider the magnetic induction, which we
shall designate by a vector �B = (Bx, By) or a complex number B(z) = Bx + ıBy . It is well
known that the magnetic induction satisfies the following equations:

div �B = 0 rot �B = 4π rot �M
where �M is a magnetization. If the magnetization is a potential field, rot �M = 0, then the
magnetic induction B(z) satisfies the equation

div �B = 0 rot �B = 0 (2.1)

and therefore has a complex potential �(z) = u(z) + ıv(z),

B(z) = d

dz
�(z). (2.2)

This means that the magnetic induction B(z) can be presented in the following way:

�B = grad u = rot �v where �v = (0, 0, v). (2.3)

The plane vector field B(z) can be presented by the differential form F(z) dz. The integral
of this form along a closed boundary of any domain D,∫

∂D

B(z) dz =
∫
D

rot �B(x, y) dx dy + ı
∫
D

div �B(x, y) dx dy

= 2π ı
∑
ak∈D

resakB(z) = C + ıQ (2.4)

has clear physical meaning: Q is the intensity and C is the circulation of the vector field B(z)

at the singular points ak, k = 1, . . . .
The form B(z) dz is invariant with respect to conformal transformations of coordinates,

B(z) dz = B(σ(z)) (dσ(z)/dz) dz, and if the vector field B(z) has a domain structure then,
according to the discussion above, its symmetry is characterized by some Kleinian subgroup �

of the Möbius group of linear-fractional transformations.
Let us recall that f (z) is called the �-automorphic form of the weight k if

f (σ(z))(cz + d)−k = f (z) σ (z) = (az + b)/(cz + d). (2.5)

Let Ak(�) be a set of automorphic forms, Gk(�) a set of holomorphous forms and Sk(�) a set
of parabolic forms.

For the vector field we have

B(z) dz = B(σ(z))
dσ(z)

dz
dz

and therefore

B(z) = B(σ(z))(cz + d)−2. (2.6)

Thus the vector field B(z) is the �-automorphic form of the weight 2, B(z) ∈ A2(�). We shall
assume further that the vector field B(z) is a holomorphic form, B(z) ∈ G2(�).
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Therefore it is important to know for every Kleinian group � the dimension of a linear
space of �-automorphic form of weight 2. It is well known (see, e.g., [6, 17, 18]) that

dim G2(�) =
{
g + m − 1 m > 0

g m = 0.

dim S2(�) = g

where g is the genus of the Riemann surface �\C+, C+ = {z ∈ C|Im z > 0} and m is a number
of non-equivalent parabolic points of the group �. For the principal congruence subgroups

�(N) = {σ ∈ �(1)|σ = 12, mod (N)}
it appears as follows: for �(1) we have g = 0 and m = 1; for �(2) we have g = 0 and m = 3,
since in this case there are three non-equivalent parabolic points 0, 1,∞, and so on. Therefore
for �(N) we have the following result:

dim G2(�(1)) = 0 dim G2(�(2)) = 2, etc.

We consider further the domain structure of vector fieldB(z) characterized by the Kleinian
group �(2) since in this case dim G2(�(N)) has the least possible non-zero value.

Example. The domain structure in a magnetic, described by the principal congruence
subgroup �(2).

We begin with the following result:

dim G2(�(2)) = 2 dim S2(�(2)) = 0.

Using the Eisenstein series it is easy to show that two linearly independent holomorphic
forms in the two-dimensional space G2(�(2)) are

f1(τ ) = −6e1(τ ) = −6℘(τ, π ı) = 1 + 24
∞∑
n=1

σ odd
1 (n)qn (2.7)

f2(τ ) = 2e2(τ ) = 2℘(τ, π ıτ) = 1 + 24
∞∑
n=1

σ odd
1 (n)qn/2 (2.8)

where

σ odd
1 (n) =

∑
d|n,d≡1 mod (2)

d

and q = e2π ıτ .
Thus any holomorphic form in the two-dimensional space G2(�(2)) is a linear

superposition of the forms f1(τ ), f2(τ ).
It follows straight from the definition that

f1((1 + ı)/2) = 0 f2(−1 + ı) = 0 (2.9)

i.e. the points (1 + ı)/2, (−1 + ı) are critical points of the vector fields f1(τ ), f2(τ ). We can
consider any critical point as a point of ‘collision’ of a domain and an anti-domain of the vector
field. By means of the linear-fractional transformations γ ∈ �(2) these points are multiplied
and form a dense set near the boundary.

Since forms f1(τ ), f2(τ ) are related by a simple affine transformation we consider further
only the first one.

In figure 3 in the upper half plane we show the fundamental domain of the magnetic with
its images and the magnetic lines f1(τ ) calculated by means of the expression (2.7).
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Figure 3. The upper half complex plane with the fundamental domain of the principal congruence
subgroup�(2) and the vector field corresponding to the�(2)-automorphic holomorphic form f1(τ )

of the weight 2 defined by the formula (2.7).

It is instructive to compare this exact theoretical domain structure with the approximate
domain structures proposed by Landau and Lifshitz (see figure 1 in [10]) and Privorotskii [14].
The Landau–Lifshitz domain structure, which is observed, for example, in iron, has no
branching and its critical points are situated on the boundary of a solid, but a global picture of
magnetic lines is similar to that presented in our figure 3. In figure 4 we have reproduced the
Privorotskii domain structure, which has a lower energy than the Landau–Lifshitz structure.
The critical points in the Privorotskii domain structure are situated inside the solid, as in our
case, but the picture of magnetic lines near the critical points differs essentially from our
figure 3. We believe that our picture of magnetic lines near the critical points is more reliable
because it is a straight consequence of the analyticity of the complex potential.

It is important to remark that the domain structures in magnetics have been studied in many
papers, reviews and books (see e.g. [10, 13, 16]) but only by means of the straight variational
methods applied to the free energy functionals.

In conclusion we wish to point out that to any discrete subgroup G of the Möbius
transformations acting on the complete complex plane (or the Riemann sphere) we can refer
the Poincaré exponent (or critical exponent) [1, 5]

δ(G) = inf

{
s :
∑
g∈G

exp(−sρ(0, g(0))) < ∞
}

where ρ is the hyperbolic metric. The limit set of the subgroup G, designated by 8(G), has
either 0, 1, 2 or infinitely many points. The point x ∈ 8(G) is called a conical limit point if
there exists a sequence of orbit points which converges to x inside a non-tangential cone with
vertex at x. We denote a set of conical points by8c(G). It appears that ifG is a non-elementary
discrete Möbius subgroup then

δ(G) = dim(8c(G))
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Figure 4. A domain of the magnetic structure with the appropriate magnetic lines presented in the
paper [14].

where dim means the Hausdorff–Besicovich dimension (or fractal dimension) [3]. This
dimension characterizes the natural width of boundaries of the domain structure and because
of this it bears a relation to the accuracy of information recording by magnetic devices.

3. Formulation of the result and the generalizations

In previous sections we have studied some examples of domain structures in superconductors
and magnetics. For illustration we have considered only �(N) groups but of course there are
no problems in studying more general Kleinian groups (see many examples in [8]).

Generalizing our observations we formulate the following statement:
symmetry structures of the plane scalar field or the vector potential and solenoidal field
on a plane must correspond to discontinuous subgroups or, which is the same thing, to the
Kleinian subgroups of the Möbius group, and the domains of the appropriate field are to be
the fundamental domains of these subgroups.

Besides the scalar and vector fields we can also discuss an arbitrary tensor field. Below we
consider some other generalizations of the theory presented above which give us the possibility
to take in account the symmetry of the crystal lattice and non-homogeneity of the medium, the
three-dimensionality of space and more general functionals of the free energy.

3.1. Quasi-conformal functions and deformations

It is possible to consider besides the analytical functions, which describe conformal maps,
the quasi-analytical functions, which describe quasi-conformal maps, and therefore the quasi-
conformal deformations of the Kleinian (and Fuchsian) groups [7]. In such a way we can
take into account, for example, the crystal symmetry of a solid (see e.g. the second part of the
book [9]).

The analytical and anti-analytical functions �(z) and �(z) satisfy appropriately the
equations ∂z�(z) = 0 and ∂z�(z) = 0. A quasi-conformal map � of a domain D satisfies the
Beltrami equation

∂z� − µ(z)∂z� = 0

where µ(z) is a measurable function in D and ‖µ‖∞ < 1.
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For mappings of the Riemann surphases the function µ(z) must satisfy the equality
µ(z) dz/dz = µ(z′) dz′/dz′, where z, z′ are local parameters of the surphases. If we consider
quasi-conformal automorphisms f of the complete complex plane C which are consistent with
the Kleinian group G, i.e. such that the group Gf = fGf −1 is a Kleinian one, then the form
µ(z) dz/dz must be G-invariant. Thus we obtain the isomorphisms χ : G → Gf which are
the quasi-conformal deformations of the group G.

3.2. Kleinian groups and domains in R
n

It is possible to study the Kleinian groups in R
n [2]. Poincaré proposed to continue the action

of an arbitrary Kleinian group to the upper half-space

R
3
+ = {(x, y, t) ∈ R

3|z = x + ıy, t > 0}
by means of inversions with respect to half-spheres with their centres situated on the complex
plane C.

We can fulfil this continuation by means of the quaternions. If we identify the complex
number z = x + ıy ∈ C with the quaternion x + ıy + j0 + k0 ∈ H and the point (x, y, t) ∈ R

3
+

with the quaternion z+j t = x+ıy+j t+k0 ∈ H then we can define the action of the unimodular
matrix [

a b

c d

]
∈ SL(2,C)

in the upper half-space R
3
+ in the following way:

(z + j t) → (z′ + j t ′) = [a(z + j t) + b][c(z + j t) + d]−1.

After continuation the elements of the Kleinian group act in R
3
+ discontinuously and become

non-Euclidean motions if we introduce the Poincaré metric

ds2 = (dx2 + dy2 + dt2)/t2.

We can also consider the Möbius groupMn of all conformal automorphisms of the extended
Euclidean space R

n = R
n ∪ ∞, n � 3. The definition of the Kleinian groups in this case is

similar to that for the two-dimensional case. The Kleinian group is called the Fuchsian one
if there exists a n-dimensional ball in R

n
which is invariant with respect to the group. The

Kleinian group is called the quasi-Fuchsian one if there exists a Jordan surface in R
n

with
interior and exterior which are homeomorphic to the ball and are invariant with respect to the
group.

There also exist many-dimensional quasi-conformal mappings of manifolds and Kleinian
groups although their set is quite restricted.

3.3. Conformal field theory and statistical mechanics

So far we have studied the quadratic free energy functionals which are valid near the temperature
of the phase transition. It is possible to consider more general non-quadratic functionals in the
frame of conformal field theory, which is used in physics to describe phase transitions. Using
the modular covariance of characters of the Virasoro and Kac–Moody algebras (see e.g. [4,5]),
we can construct non-quadratic free energy functionals which give us the possibility to describe
the domain structures far from the temperature of the phase transition.
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